大数据分析软件有哪些
奥威推出的跨平台大数据可视化分析平台——OurwayBI。
OurwayBI采用Node.js。Node.js是一个Javascript运行环境(runtime),它实际上是对GoogleV8引擎进行了封装。V8引擎执行Javascript的速度非常快,利用基于时间序列的内存计算技术,减少与数据库的交互,可大大提升效率。操作指引更易上手:OurwayBI为了让用户不进行任何培训即可掌握常用操作,设置了操作指引,智能引导用户逐步掌握基本操作及各项技巧。整个产品的UI进行了大量细节优化,以增加使用者的美观要求与使用体验等。
奥威软件经过10余年的努力,获得了广大客户及业内专家的认可,已经成为国内最具创新力与竞争力的大数据与商业智能领域知名厂商。奥威软件通过不断地知识创新、积累与传播,以普及商业智能技术与应用为己任,为中国企业及相关信息化解决方案供应商提供最具性价比的大数据与商业智能产品,以及咨询、实施与培训服务,构建大数据绿色生态社区,帮助客户达成信息化最后一公里,真正提升信息化应用价值。
数据处理软件有哪些
matlab / SPSS /DIMENSION / QUANTUM / SAS /Surveycraft / 我用过的有Surveycraft /DIMENSION /QUANTUM [SPSS没用完全处理过数据[常常只用过做过渡的数据]. 偶觉的想要批量大量的处理数据和分析,SPSS在效率上没有Surveycraft / QUANTUM 快. 像Surveycraft 可以录制宏后批量出TABLE.宏自动更改设定的条件.以前常常让电脑自己跑一晚上. 早上上班几百套table.就差不多搞定了.
大数据分析工具有哪些,好用的有吗
大数据分析的前瞻性使得很多公司以及企业都开始使用大数据分析对公司的决策做出帮助,而大数据分析是去分析海量的数据,所以就不得不借助一些工具去分析大数据,。一般来说,数据分析工作中都是有很多层次的,这些层次分别是数据存储层、数据报表层、数据分析层、数据展现层。对于不同的层次是有不同的工具进行工作的。下面小编就对大数据分析工具给大家好好介绍一下。
首先我们从数据存储来讲数据分析的工具。我们在分析数据的时候首先需要存储数据,数据的存储是一个非常重要的事情,如果懂得数据库技术,并且能够操作好数据库技术,这就能够提高数据分析的效率。而数据存储的工具主要是以下的工具。
1、MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力。
2、SQL Server的最新版本,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了。
3、DB2,Oracle数据库都是大型数据库了,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台;
接着说数据报表层。一般来说,当企业存储了数据后,首先要解决报表的问题。解决报表的问题才能够正确的分析好数据库。关于数据报表所用到的数据分析工具就是以下的工具。
1、Crystal Report水晶报表,Bill报表,这都是全球最流行的报表工具,非常规范的报表设计思想,早期商业智能其实大部分人的理解就是报表系统,不借助IT技术人员就可以获取企业各种信息——报表。
2、Tableau软件,这个软件是近年来非常棒的一个软件,当然它已经不是单纯的数据报表软件了,而是更为可视化的数据分析软件,因为很多人经常用它来从数据库中进行报表和可视化分析。
第三说的是数据分析层。这个层其实有很多分析工具,当然我们最常用的就是Excel,我经常用的就是统计分析和数据挖掘工具;
1、Excel软件,首先版本越高越好用这是肯定的;当然对Excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;
2、SPSS软件:当前版本是18,名字也改成了PASW Statistics;我从3.0开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件。
最后说表现层的软件。一般来说表现层的软件都是很实用的工具。表现层的软件就是下面提到的内容。
1、PowerPoint软件:大部分人都是用PPT写报告。
2、Visio、SmartDraw软件:这些都是非常好用的流程图、营销图表、地图等,而且从这里可以得到很多零件;
3、Swiff Chart软件:制作图表的软件,生成的是Flash。
SQLSERVER大数据库解决方案
在微软的大数据解决方案中,数据管理是最底层和最基础的一环。
灵活的数据管理层,可以支持所有数据类型,包括结构化、半结构化和非结构化的静态或动态数据。
在数据管理层中主要包括三款产品:SQL Server、SQL Server并行数据仓库和
Hadoop on Windows。
针对不同的数据类型,微软提供了不同的解决方案。
具体来说,针对结构化数据可以使用SQL Server和SQL Server并行数据仓库处理。
非结构化数据可以使用Windows Azure和WindowsServer上基于Hadoop的发行版本处理;而流数据可以使用SQL Server StreamInsight管理,并提供接近实时的分析。
1、SQL Server。去年发布的SQL Server 2012针对大数据做了很多改进,其中最重要的就是全面支持Hadoop,这也是SQL Server 2012与SQL Server 2008最重要的区别之一。今年年底即将正式发布的SQL Server 2014中,SQL Server进一步针对大数据加入内存数据库功能,从硬件角度加速数据的处理,也被看为是针对大数据的改进。
2、SQL Server并行数据仓库。并行数据仓库(Parallel Data Warehouse Appliance,简称PDW)是在SQL Server 2008 R2中推出的新产品,目前已经成为微软主要的数据仓库产品,并将于今年发布基于SQL Server 2012的新款并行数据仓库一体机。SQL Server并行数据仓库采取的是大规模并行处理(MPP)架构,与传统的单机版SQL Server存在着根本上的不同,它将多种先进的数据存储与处理技术结合为一体,是微软大数据战略的重要组成部分。
3、Hadoop on Windows。微软同时在Windows Azure平台和Windows Server上提供Hadoop,把Hadoop的高性能、高可扩展与微软产品易用、易部署的传统优势融合到一起,形成完整的大数据解决方案。微软大数据解决方案还通过简单的部署以及与Active Directory和System Center等组件的集成,为Hadoop提供了Windows的易用性和可管理性。凭借Windows Azure上基于Hadoop的服务,微软为其大数据解决方案在云端提供了灵活性。
JAVA开源大数据查询分析引擎有哪些方案
在大数据处理分析过程中常用的六大工具:HadoopHadoop是一个能够对大量数据进行分布式处理的软件框架。但是Hadoop是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop还是可伸缩的,能够处理PB级数据。此外,Hadoop依赖于社区服务器,因此它的成本比较低,任何人都可以使用。HPCCHPCC,HighPerformanceComputingandCommunications(高性能计算与通信)的缩写。1993年,由美国科学、工程、技术联邦协调理事会向国会提交了逗重大挑战项目:高性能计算与通信地的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆比特网络技术,扩展研究和教育机构及网络连接能力。StormStorm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。Storm很简单,支持许多种编程语言,使用起来非常有趣。ApacheDrill为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件会近日发起了一项名为逗Drill地的开源项目。ApacheDrill实现了Google’sDremel.据Hadoop厂商MapRTechnologies公司产品经理TomerShiran介绍,逗Drill地已经作为Apache孵化器项目来运作,将面向全球软件工程师持续推广。RapidMinerRapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。
数据分析软件有哪些,他们分别的特点是什么
亿信华辰—一站式数据分析平台(ABI)
亿信华辰的一站式数据分析平台(ABI)是一款全能型产品,融合了数据源适配、ETL数据处理、数据建模、数据分析、数据填报、工作流、门户、移动应用等核心功能。采用轻量级SOA架构设计、B/S模式,各模块间无缝集成。使用了新一代的3D引擎技术,大屏展示炫酷。支持广泛的数据源接入。数据整合模块支持可视化的定义ETL过程,完成对数据的清洗、装换、处理。数据集模块支持数据库、文件、接口等多方式的数据建模。数据分析模块支持报表分析、敏捷看板、即席报告、幻灯片、酷屏、数据填报、数据挖掘等多种分析手段对数据进行分析、展现、应用。
神策数据—神策分析
神策分析的产品有完整的使用文档,每个模块都有详细的使用说明以及示例,降低了用户的学习成本。而且支持私有部署、任意维度的交叉分析,并帮助客户搭建专属的数据仓库。目前提供事件分析、漏斗分析、留存分析、数据管理等功能,未来预计会增加用户分群、用户人群分析、推送和异常维度组合挖掘等,工具需要付费使用。
帆软—FineBI
FineBI分为数据处理、可视分析和分享公用三大功能模块。支持多种数据源,图表风格清爽美观,可选择任意维度分析。分析页面由控件和组件组成,控件和组件的数量是可以添加至任意多个,但是布局的交互比较僵硬,且使用逻辑有点乱,引导不明确。需要安装本地客户端才能使用。
永洪科技—永洪BI
永洪BI是一款可在前端进行多维分析和报表展现的BI软件。支持拖拽操作,数据源格式多样,提供不同级别的查询支持,支持跨库跨源连接。另外永洪提供了一款数据存储、数据处理的软件——MPP数据集市,可与BI打通,使得数据查询,钻取和展示的速度大幅度提高。不过其产品用户体验一般,拖拽过于自由,导致仪表盘布局不好控制;主题样式虽多但是给人感觉样式还是很传统。
请教基于LABVIEW的动态数据采集和处理系统的设计方案
虚拟仪器及LabVIEW入门
1.1 虚拟仪器概述
虚拟仪器(virtual instrumention)是基于计算机的仪器。计算机和仪器的密切结合是目前仪器发展的一个重要方向。粗略地说这种结合有两种方式,一种是将计算机装入仪器,其典型的例子就是所谓智能化的仪器。随着计算机功能的日益强大以及其体积的日趋缩小,这类仪器功能也越来越强大,目前已经出现含嵌入式系统的仪器。另一种方式是将仪器装入计算机。以通用的计算机硬件及操作系统为依托,实现各种仪器功能。虚拟仪器主要是指这种方式。下面的框图反映了常见的虚拟仪器方案。
虚拟仪器的主要特点有:
尽可能采用了通用的硬件,各种仪器的差异主要是软件。
可充分发挥计算机的能力,有强大的数据处理功能,可以创造出功能更强的仪器。
用户可以根据自己的需要定义和制造各种仪器。
虚拟仪器实际上是一个按照仪器需求组织的数据采集系统。虚拟仪器的研究中涉及的基础理论主要有计算机数据采集和数字信号处理。目前在这一领域内,使用较为广泛的计算机语言是美国NI公司的LabVIEW。
虚拟仪器的起源可以追朔到20世纪70年代,那时计算机测控系统在国防、航天等领域已经有了相当的发展。PC机出现以后,仪器级的计算机化成为可能,甚至在Microsoft公司的Windows诞生之前,NI公司已经在Macintosh计算机上推出了LabVIEW2.0以前的版本。对虚拟仪器和LabVIEW长期、系统、有效的研究开发使得该公司成为业界公认的权威。
普通的PC有一些不可避免的弱点。用它构建的虚拟仪器或计算机测试系统性能不可能太高。目前作为计算机化仪器的一个重要发展方向是制定了VXI标准,这是一种插卡式的仪器。每一种仪器是一个插卡,为了保证仪器的性能,又采用了较多的硬件,但这些卡式仪器本身都没有面板,其面板仍然用虚拟的方式在计算机屏幕上出现。这些卡插入标准的VXI机箱,再与计算机相连,就组成了一个测试系统。VXI仪器价格昂贵,目前又推出了一种较为便宜的PXI标准仪器。
虚拟仪器研究的另一个问题是各种标准仪器的互连及与计算机的连接。目前使用较多的是IEEE 488或GPIB协议。未来的仪器也应当是网络化的。
1.2 LabVIEW是什么?
LabVIEW(Laboratory Virtual instrument Engineering)是一种图形化的编程语言,它广泛地被工业界、学术界和研究实验室所接受,视为一个标准的数据采集和仪器控制软件。LabVIEW集成了与满足GPIB、VXI、RS-232和RS-485协议的硬件及数据采集卡通讯的全部功能。它还内置了便于应用TCP/IP、ActiveX等软件标准的库函数。这是一个功能强大且灵活的软件。利用它可以方便地建立自己的虚拟仪器,其图形化的界面使得编程及使用过程都生动有趣。
图形化的程序语言,又称为“G”语言。使用这种语言编程时,基本上不写程序代码,取而代之的是流程图或流程图。它尽可能利用了技术人员、科学家、工程师所熟悉的术语、图标和概念,因此,LabVIEW是一个面向最终用户的工具。它可以增强你构建自己的科学和工程系统的能力,提供了实现仪器编程和数据采集系统的便捷途径。使用它进行原理研究、设计、测试并实现仪器系统时,可以大大提高工作效率。
利用LabVIEW,可产生独立运行的可执行文件,它是一个真正的32位编译器。像许多重要的软件一样,LabVIEW提供了Windows、UNIX、Linux、Macintosh的多种版本。
1.3 LabVIEW的运行机制
1. 3.1 LabVIEW应用程序的构成
所有的LabVIEW应用程序,即虚拟仪器(VI),它包括前面板(front panel)、流程图(block diagram)以及图标/连结器(icon/connector)三部分。
做大数据分析系统Hadoop需要用哪些软件
1、ApacheMesos
代码托管地址:ApacheSVN
Mesos提供了高效、跨分布式应用程序和框架的资源隔离和共享,支持Hadoop、MPI、Hypertable、Spark等。
Mesos是Apache孵化器中的一个开源项目,使用ZooKeeper实现容错复制,使用LinuxContainers来隔离任务,支持多种资源计划分配(内存和CPU)。提供Java、Python和C++APIs来开发新的并行应用程序,提供基于Web的用户界面来提查看集群状态。
2、HadoopYARN
代码托管地址:ApacheSVN
YARN又被称为MapReduce2.0,借鉴Mesos,YARN提出了资源隔离解决方案Container,但是目前尚未成熟,仅仅提供Java虚拟机内存的隔离。
对比MapReduce1.x,YARN架构在客户端上并未做太大的改变,在调用API及接口上还保持大部分的兼容,然而在YARN中,开发人员使用ResourceManager、ApplicationMaster与NodeManager代替了原框架中核心的JobTracker和TaskTracker。其中ResourceManager是一个中心的服务,负责调度、启动每一个Job所属的ApplicationMaster,另外还监控ApplicationMaster的存在情况;NodeManager负责Container状态的维护,并向RM保持心跳。ApplicationMaster负责一个Job生命周期内的所有工作,类似老的框架中JobTracker。
Hadoop上的实时解决方案
前面我们有说过,在互联网公司中基于业务逻辑需求,企业往往会采用多种计算框架,比如从事搜索业务的公司:网页索引建立用MapReduce,自然语言处理用Spark等。
3、ClouderaImpala
代码托管地址:GitHub
Impala是由Cloudera开发,一个开源的MassivelyParallelProcessing(MPP)查询引擎。与Hive相同的元数据、SQL语法、ODBC驱动程序和用户接口(HueBeeswax),可以直接在HDFS或HBase上提供快速、交互式SQL查询。Impala是在Dremel的启发下开发的,第一个版本发布于2012年末。
Impala不再使用缓慢的Hive+MapReduce批处理,而是通过与商用并行关系数据库中类似的分布式查询引擎(由QueryPlanner、QueryCoordinator和QueryExecEngine三部分组成),可以直接从HDFS或者HBase中用SELECT、JOIN和统计函数查询数据,从而大大降低了延迟。
4、Spark
代码托管地址:Apache
Spark是个开源的数据分析集群计算框架,最初由加州大学伯克利分校AMPLab开发,建立于HDFS之上。Spark与Hadoop一样,用于构建大规模、低延时的数据分析应用。Spark采用Scala语言实现,使用Scala作为应用框架。
Spark采用基于内存的分布式数据集,优化了迭代式的工作负载以及交互式查询。与Hadoop不同的是,Spark和Scala紧密集成,Scala像管理本地collective对象那样管理分布式数据集。Spark支持分布式数据集上的迭代式任务,实际上可以在Hadoop文件系统上与Hadoop一起运行(通过YARN、Mesos等实现)。
5、Storm
代码托管地址:GitHub
Storm是一个分布式的、容错的实时计算系统,由BackType开发,后被Twitter捕获。Storm属于流处理平台,多用于实时计算并更新数据库。Storm也可被用于“连续计算”(continuouscomputation),对数据流做连续查询,在计算时就将结果以流的形式输出给用户。它还可被用于“分布式RPC”,以并行的方式运行昂贵的运算。
Hadoop上的其它解决方案
就像前文说,基于业务对实时的需求,各个实验室发明了Storm、Impala、Spark、Samza等流实时处理工具。而本节我们将分享的是实验室基于性能、兼容性、数据类型研究的开源解决方案,其中包括Shark、Phoenix、ApacheAccumulo、ApacheDrill、ApacheGiraph、ApacheHama、ApacheTez、ApacheAmbari。
6、Shark
代码托管地址:GitHub
Shark,代表了“HiveonSpark”,一个专为Spark打造的大规模数据仓库系统,兼容ApacheHive。无需修改现有的数据或者查询,就可以用100倍的速度执行HiveQL。
Shark支持Hive查询语言、元存储、序列化格式及自定义函数,与现有Hive部署无缝集成,是一个更快、更强大的替代方案。
7、Phoenix
代码托管地址:GitHub
Phoenix是构建在ApacheHBase之上的一个SQL中间层,完全使用Java编写,提供了一个客户端可嵌入的JDBC驱动。Phoenix查询引擎会将SQL查询转换为一个或多个HBasescan,并编排执行以生成标准的JDBC结果集。直接使用HBaseAPI、协同处理器与自定义过滤器,对于简单查询来说,其性能量级是毫秒,对于百万级别的行数来说,其性能量级是秒。Phoenix完全托管在GitHub之上。
Phoenix值得关注的特性包括:1,嵌入式的JDBC驱动,实现了大部分的java.sql接口,包括元数据API;2,可以通过多个行键或是键/值单元对列进行建模;3,DDL支持;4,版本化的模式仓库;5,DML支持;5,通过客户端的批处理实现的有限的事务支持;6,紧跟ANSISQL标准。
8、ApacheAccumulo
代码托管地址:ApacheSVN
ApacheAccumulo是一个可靠的、可伸缩的、高性能、排序分布式的键值存储解决方案,基于单元访问控制以及可定制的服务器端处理。使用GoogleBigTable设计思路,基于ApacheHadoop、Zookeeper和Thrift构建。Accumulo最早由NSA开发,后被捐献给了Apache基金会。
对比GoogleBigTable,Accumulo主要提升在基于单元的访问及服务器端的编程机制,后一处修改让Accumulo可以在数据处理过程中任意点修改键值对。
9、ApacheDrill
代码托管地址:GitHub
本质上,ApacheDrill是GoogleDremel的开源实现,本质是一个分布式的mpp查询层,支持SQL及一些用于NoSQL和Hadoop数据存储系统上的语言,将有助于Hadoop用户实现更快查询海量数据集的目的。当下Drill还只能算上一个框架,只包含了Drill愿景中的初始功能。
Drill的目的在于支持更广泛的数据源、数据格式及查询语言,可以通过对PB字节数据的快速扫描(大约几秒内)完成相关分析,将是一个专为互动分析大型数据集的分布式系统。
10、ApacheGiraph
代码托管地址:GitHub
ApacheGiraph是一个可伸缩的分布式迭代图处理系统,灵感来自BSP(bulksynchronousparallel)和Google的Pregel,与它们区别于则是是开源、基于Hadoop的架构等。
Giraph处理平台适用于运行大规模的逻辑计算,比如页面排行、共享链接、基于个性化排行等。Giraph专注于社交图计算,被Facebook作为其OpenGraph工具的核心,几分钟内处理数万亿次用户及其行为之间的连接。
11、ApacheHama
代码托管地址:GitHub
ApacheHama是一个建立在Hadoop上基于BSP(BulkSynchronousParallel)的计算框架,模仿了Google的Pregel。用来处理大规模的科学计算,特别是矩阵和图计算。集群环境中的系统架构由BSPMaster/GroomServer(ComputationEngine)、Zookeeper(DistributedLocking)、HDFS/HBase(StorageSystems)这3大块组成。
12、ApacheTez
代码托管地址:GitHub
ApacheTez是基于HadoopYarn之上的DAG(有向无环图,DirectedAcyclicGraph)计算框架。它把Map/Reduce过程拆分成若干个子过程,同时可以把多个Map/Reduce任务组合成一个较大的DAG任务,减少了Map/Reduce之间的文件存储。同时合理组合其子过程,减少任务的运行时间。由Hortonworks开发并提供主要支持。
13、ApacheAmbari
代码托管地址:ApacheSVN
ApacheAmbari是一个供应、管理和监视ApacheHadoop集群的开源框架,它提供一个直观的操作工具和一个健壮的HadoopAPI,可以隐藏复杂的Hadoop操作,使集群操作大大简化,首个版本发布于2012年6月。
ApacheAmbari现在是一个Apache的顶级项目,早在2011年8月,Hortonworks引进Ambari作为ApacheIncubator项目,制定了Hadoop集群极致简单管理的愿景。在两年多的开发社区显着成长,从一个小团队,成长为Hortonworks各种组织的贡献者。Ambari用户群一直在稳步增长,许多机构依靠Ambari在其大型数据中心大规模部署和管理Hadoop集群。
目前ApacheAmbari支持的Hadoop组件包括:HDFS、MapReduce、Hive、HCatalog、HBase、ZooKeeper、Oozie、Pig及Sqoop。
有什么批发型企业可以用的数据分析软件
产品360、客户360、企业体检360都可以帮你分析企业的数据,能帮你增加营业额,提高人员效率,提升企业竞争力.看你是不是需要这样的软件.
在.net框架下有哪些海量数据的处理方案
海量数据的处理一般是属于数据层的东西,跟.NET或者JAVA这些关系不是很大.比如一般的企业级应用会使用SQL SERVER 或者ORACLE这种关系型DB,因为开发较为简单,性能也足够日常的开销.如果是互联网公司,面对海量数据的时候会使用nosql数据库,如HBASE、Casssandra这种非关系型数据库来处理.如果你指的是“一个.NET程序在单位时间内处理内存中的大批量的数据”,那么我能给的建议就是多线程+分页处理了.