数据分析软件spss实用教程(数据分析软件spss实用教程视频)

数据分析软件spss实用教程(数据分析软件spss实用教程视频)缩略图

怎么使用SPSS软件

怎么使用SPSS软件

当我们的调查问卷在把调查数据拿回来后,我们该做的工作就是用相关的统计软件进行处理,在此,我们以spss为处理软件,来简要说明一下问卷的处理过程,它的过程大致可分为四个过程:定义变量、数据录入、统计分析和结果保存.下面将从这四个方面来对问卷的处理做详细的介绍.

Spss处理:

第一步:定义变量

大多数情况下我们需要从头定义变量,在打开SPSS后,我们可以看到和excel相似的界面,在界面的左下方可以看到Data View, Variable View两个标签,只需单击左下方的Variable View标签就可以切换到变量定义界面开始定义新变量。在表格上方可以看到一个变量要设置如下几项:name(变量名)、type(变量类型)、width(变量值的宽度)、decimals(小数位) 、label(变量标签) 、Values(定义具体变量值的标签)、Missing(定义变量缺失值)、Colomns(定义显示列宽)、Align(定义显示对齐方式)、Measure(定义变量类型是连续、有序分类还是无序分类).

我们知道在spss中,我们可以把一份问卷上面的每一个问题设为一个变量,这样一份问卷有多少个问题就要有多少个变量与之对应,每一个问题的答案即为变量的取值.现在我们以问卷第一个问题为例来说明变量的设置.为了便于说明,可假设此题为:

1.请问你的年龄属于下面哪一个年龄段( )?

A:20—29 B:30—39 C:40—49 D:50–59

那么我们的变量设置可如下: name即变量名为1,type即类型可根据答案的类型设置,答案我们可以用1、2、3、4来代替A、B、C、D,所以我们选择数字型的,即选择Numeric, width宽度为4,decimals即小数位数位为0(因为答案没有小数点),label即变量标签为“年龄段查询”。Values用于定义具体变量值的标签,单击Value框右半部的省略号,会弹出变量值标签对话框,在第一个文本框里输入1,第二个输入20—29,然后单击添加即可.同样道理我们可做如下设置,即1=20—29、2=30—39、3=40—49、4=50–59;Missing,用于定义变量缺失值, 单击missing框右侧的省略号,会弹出缺失值对话框, 界面上有一列三个单选钮,默认值为最上方的“无缺失值”;第二项为“不连续缺失值”,最多可以定义3个值;最后一项为“缺失值范围加可选的一个缺失值”,在此我们不设置缺省值,所以选中第一项如图;Colomns,定义显示列宽,可自己根据实际情况设置;Align,定义显示对齐方式,有居左、居右、居中三种方式;Measure,定义变量类型是连续、有序分类还是无序分类。

以上为问卷中常见的单项选择题型的变量设置,下面将对一些特殊情况的变量设置也作一下说明.

1.开放式题型的设置:诸如你所在的省份是_____这样的填空题即为开放题,设置这些变量的时候只需要将Value 、Missing两项不设置即可.

2.多选题的变量设置:这类题型的设置有两种方法即多重二分法和多重分类法,在这里我们只对多重二分法进行介绍.这种方法的基本思想是把该题每一个选项设置成一个变量,然后将每一个选项拆分为两个选项项,即选中该项和不选中该项.现在举例来说明在spss中的具体操作.比如如下一例:

请问您通常获取新闻的方式有哪些( )

1 报纸 2 杂志 3 电视 4 收音机 5 网络

在spss中设置变量时可为此题设置五个变量,假如此题为问卷第三题,那么变量名分别为3_1、3_2、3_3、3_4、3_5,然后每一个选项有两个选项选中和不选中,只需在Value一项中为每一个变量设置成1=选中此项、0=不选中此项即可.

使用该窗口,我们可以把一个问卷中的所有问题作为变量在这个窗口中一次定义。

到此,我们的定义变量的工作就基本上可以结束了.下面我们要作就是数据的录入了.首先,我们要回到数据录入窗口,这很简单,只要我们点击软件左下方的Data View标签就可以了.

第二步:数据录入

Spss数据录入有很多方式,大致有一下几种:

1.读取SPSS格式的数据

2.读取Excel等格式的数据

3.读取文本数据(Fixed和Delimiter)

4.读取数据库格式数据(分如下两步)

(1)配置ODBC (2)在SPSS中通过ODBC和数据库进行

但是对于问卷的数据录入其实很简单,只要在spss的数据录入窗口中直接输入就可以了,只是在这里有几点注意的事项需要说明一下.

1. 在数据录入窗口,我们可以看到有一个表格,这个表格中的每一行代表一份问卷,我们也称为一个个案.

2. 在数据录入窗口中,我们可以看到表格上方出现了1、2、3、4、5…….的标签名,这其实是我们在第一步定义变量中,我们为问卷的每一个问题取的变量名,即1代表第一题,2代表第二题.以次类推.我们只需要在变量名下面输入对应问题的答案即可完成问卷的数据录入.比如上述年龄段查询的例题,如果问卷上勾选了A答案,我们在1下面输入1就行了(不要忘记我们通常是用1、2、3、4来代替A、B、C、D的).

3.我们知道一行代表一份问卷,所以有几分问卷,就要有几行的数据.

在数据录入完成后,我们要做的就是我们的关键部分,即问卷的统计分析了,因为这时我们已经把问卷中的数据录入我们的软件中了.

第三步:统计分析

有了数据,可以利用SPSS的各种分析方法进行分析,但选择何种统计分析方法,即调用哪个统计分析过程,是得到正确分析结果的关键。这要根据我们的问卷调查的目的和我们想要什么样的结果来选择.SPSS有数值分析和作图分析两类方法.

1.作图分析:

在SPSS中,除了生存分析所用的生存曲线图被整合到Analyze菜单中外,其他的统计绘图功能均放置在graph菜单中。该菜单具体分为以下几部分::

(1)Gallery:相当于一个自学向导,将统计绘图功能做了简单的介绍,初学者可以通过它对SPSS的绘图能力有一个大致的了解。

(2)Interactive:交互式统计图。

(3)Map:统计地图。

(4)下方的其他菜单项是我们最为常用的普通统计图,具体来说有:

条图

散点图

线图

直方图

饼图

面积图

箱式图

正态Q-Q图

正态P-P图

质量控制图

Pareto图

自回归曲线图

高低图

交互相关图

序列图

频谱图

误差线图

作图分析简单易懂,一目了然,我们可根据需要来选择我们需要作的图形,一般来讲,我们较常用的有条图,直方图,正态图,散点图,饼图等等,具体操作很简单,大家可参阅相关书籍,作图分析更多情况下是和数值分析相结合来对试卷进行分析的,这样的效果更好.

2.数值分析:

SPSS 数值统计分析过程均在Analyze菜单中,包括:

(1)、Reports和Descriptive Statistics:又称为基本统计分析.基本统计分析是进行其他更深入的统计分析的前提,通过基本统计分析,用户可以对分析数据的总体特征有比较准确的把握,从而选择更为深入的分析方法对分析对象进行研究。Reports和Descriptive Statistics命令项中包括的功能是对单变量的描述统计分析。

Descriptive Statistics包括的统计功能有:

Frequencies(频数分析):作用:了解变量的取值分布情况

Descriptives(描述统计量分析):功能:了解数据的基本统计特征和对指定的变量值进行标准化处理

Explore(探索分析):功能:考察数据的奇异性和分布特征

Crosstabs(交叉分析):功能:分析事物(变量)之间的相互影响和关系

Reports包括的统计功能有:

OLAP Cubes(OLAP报告摘要表):功能: 以分组变量为基础,计算各组的总计、均值和其他统计量。而输出的报告摘要则是指每个组中所包含的各种变量的统计信息。

Case Summaries(观测量列表):察看或打印所需要的变量值

Report Summaries in Row:行形式输出报告

Report Summaries in Columns:列形式输出报告

(2)、Compare Means(均值比较与检验):能否用样本均值估计总体均值?两个变量均值接近的样本是否来自均值相同的总体?换句话说,两组样本某变量均值不同,其差异是否具有统计意义?能否说明总体差异?这是各种研究工作中经常提出的问题。这就要进行均值比较。

以下是进行均值比较及检验的过程:

MEANS过程:不同水平下(不同组)的描述统计量,如男女的平均工资,各工种的平均工资。目的在于比较。术语:水平数(指分类变量的值数,如sex变量有2个值,称为有两个水平)、单元Cell(指因变量按分类变量值所分的组)、水平组合

T test 过程:对样本进行T检验的过程

单一样本的T检验:检验单个变量的均值是否与给定的常数之间存在差异。

独立样本的T检验:检验两组不相关的样本是否来自具有相同均值的总体(均值是否相同,如男女的平均收入是否相同,是否有显著性差异)

配对T检验:检验两组相关的样本是否来自具有相同均值的总体(前后比较,如训练效果,治疗效果)

One-Way ANOVA:一元(单因素)方差分析,用于检验几个(三个或三个以上)独立的组,是否来自均值相同的总体。

(3)、ANOVA Models(方差分析):方差分析是检验多组样本均值间的差异是否具有统计意义的一种方法。例如:医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同饲料对牲畜体重增长的效果等,都可以使用方差分析方法去解决

(4)、Correlate(相关分析):它是研究变量间密切程度的一种常用统计方法,常用的相关分析有以下几种:

1、线性相关分析:研究两个变量间线性关系的程度。用相关系数r来描述。

2、偏相关分析:它描述的是当控制了一个或几个另外的变量的影响条件下两个变量间的相关性,如控制年龄和工作经验的影响,估计工资收入与受教育水平之间的相关关系

3、相似性测度:两个或若干个变量、两个或两组观测量之间的关系有时也可以用相似性或不相似性来描述。相似性测度用大值表示很相似,而不相似性用距离或不相似性来描述,大值表示相差甚远

(5)、Regression(回归分析):功能:寻求有关联(相关)的变量之间的关系在回归过程中包括:Liner:线性回归;Curve Estimation:曲线估计;Binary Logistic: 二分变量逻辑回归;Multinomial Logistic:多分变量逻辑回归;Ordinal 序回归;Probit:概率单位回归;Nonlinear:非线性回归;Weight Estimation:加权估计;2-Stage Least squares:二段最小平方法;Optimal Scaling 最优编码回归;其中最常用的为前面三个.

(6)、Nonparametric Tests(非参数检验):是指在总体不服从正态分布且分布情况不明时,用来检验数据资料是否来自同一个总体假设的一类检验方法。由于这些方法一般不涉及总体参数故得名。

非参数检验的过程有以下几个:

1.Chi-Square test 卡方检验

2.Binomial test 二项分布检验

3.Runs test 游程检验

4.1-Sample Kolmogorov-Smirnov test 一个样本柯尔莫哥洛夫-斯米诺夫检验

5.2 independent Samples Test 两个独立样本检验

6.K independent Samples Test K个独立样本检验

7.2 related Samples Test 两个相关样本检验

8.K related Samples Test 两个相关样本检验

(7)、Data Reduction(因子分析)

(8)、Classify(聚类与判别)等等

以上就是数值统计分析Analyze菜单下几项用于分析的数值统计分析方法的简介,在我们的变量定义以及数据录入完成后,我们就可以根据我们的需要在以上几种分析方法中选择若干种对我们的问卷数据进行统计分析,来得到我们想要的结果.

第四步:结果保存

我们的spss软件会把我们统计分析的多有结果保存在一个窗口中即结果输出窗口(output),由于spss软件支持复制和粘贴功能,这样我们就可以把我们想要的结果复制、粘贴到我们的报告中,当然我们也可以在菜单中执行file->save来保存我们的结果,一般情况下,我们建议保存我们的数据,结果可不保存.因为只要有了数据,如果我们想要结果的,我们可以随时利用数据得到结果.

总结:

以上便是spss处理问卷的四个步骤,四个步骤结束后,我们需要spss软件做的工作基本上也就结束了,接下来的任务就是写我们的统计报告了.值得一提的是.spss是一款在社会统计学应用非常广泛的统计类软件,学好它将对我们以后的工作学习产生很大的意义和作用.

跪求大神,怎么使用spss软件对其进行分析?指一下大致的方向,比如是用单因素方差分析还是样本T检验等

跪求大神,怎么使用spss软件对其进行分析?指一下大致的方向,比如是用单因素方差分析还是样本T检验等

第一个问题,对于同一样本总体的两个不同时间的样本,可以通过配对T检验实现.其含义是经过施加某种改变以后,后一期的效果是否与前一期的效果明显不同.通常用于检验方法(政策)的效果. 第二个问题,检验一个度量变量对于另一个度量变量的影响,可以通过“一般线性模型”的“单变量(U"和"多变量(M)"进行分析. 如果你的数据很少的话,建议你尝试一下”非参数检验“,这个模块与”均值比较“还是有很多相像,理解并不难.

如何用spss软件进行数据拟合

如何用spss软件进行数据拟合

把数据导入后,点击分析——回归——曲线估计,把所有类型的曲线都勾起来,看下输出框里面哪个R方最大,就是拟合最符合类型的曲线

spss17.0 中文版 如何做简单的相关分析,求操作步骤。然后数据分析。求标准差、方差分析

1.打开数据,依次点击:analyse–regression–binarylogistic,打开二分回抄归对话框。

2.将因变量和自变量放入格子的列表里,上面的是因变量,下面的是自变量。

3.设置回归方法,这里选择最简单的方法:enter,它指的是将所有的变量一次纳入到方程。其他方法都是逐步2113进入的方法。

4.等级资料,连续资料不需要设置虚拟变量。多分类变量需要设置虚拟变量。

5.选项里面至少选择526195%CI。

点击ok。

1.打开数据,依次点击:analyse–regression,打开多元线性回归对话框。

2.将因4102变量和自变量放入格子的列表里,上面的是因变量,下面的是自变量。

3.设置回归方法,这里选择最简单的方法:enter,它指的是将所有的变量一次纳入到方程。其他方法都是逐步进入的方法。

4.等级资料,1653连续资料不需要设置虚拟变量。多分类变量需要设置虚拟变量。

5.选项里面至少选择95%CI。

点击ok。

SPSS软件如何操作

bin有多种含义,包括虚拟光驱格式.bin,从你所描述的内容来看,你的文件名后缀为BIN,应该是虚拟光驱文件,这个是可以肯定的,因为我也刚下了一个后缀为BIN的SPSS13.0软件,正在用.

打开bin后缀的文件要使用虚拟光驱软件;

在此我强烈推荐两款虚拟光驱软件

1,首先是DAEMON虚拟光驱软件,这是一个文件相当小的虚拟光盘驱动器工具软件,它支持Win9x/win2k/xp,也支持ps,并支持加密光盘,安装完后你不需要重新起动计算机即可使用虚拟光盘驱动器了,绿色程度很高。

它也是一个相当先进的类比备份并且合并保护的软件,它可以备份SafeDisc保护的软件,可以打开BIN,CUE,ISO and CCD 等这些虚拟光盘驱动器的镜像档。

http://download.panaid.com/Download.asp?ID=3814

文件大小1191kb

2,推荐使用WinISO虚拟光驱软件,WinISO是一款功能强大的镜像文件处理工具,它可以打开几乎所有的虚拟光驱文件,其功能与上面介绍的daemon有的一拼,它也可以从CD-ROM中创建ISO镜像文件,或将其他格式的镜像文件转换为标准的ISO格式,还可以轻松实现镜像文件的添加、删除、重命名、提取文件等操作。

WINISO

http://www.skycn.com/soft/5933.html

文件大小1181kb

注:提供SPSS下载的人之所以要把原来的安装文件做成了BIN这种虚拟光驱镜象文件,就是因为可以让下载这个软件的用户只执行一次操作即可完成下载;另外一个主要的原因是通过虚拟光驱制作出来的镜象文件压缩程度高,读取速度快,这些都是它的优点.

SPSS数据统计分析软件具体怎么用啊?

SPSS:是款软件

SPSS是一个统计功能非常完善的软件

SPSS软件的特点

一、集数据录入、资料编辑、数据管理、统计分析、报表制作、图形绘制为一体。从理论上说,只要计算机硬盘和内存足够大,SPSS可以处理任意大小的数据文件,无论文件中包含多少个变量,也不论数据中包含多少个案例。

二、统计功能囊括了《教育统计学》中所有的项目,包括常规的集中量数和差异量数、相关分析、回归分析、方差分析、卡方检验、t检验和非参数检验;也包括近期发展的多元统计技术,如多元回归分析、聚类分析、判别分析、主成e79fa5e98193e4b893e5b19e31333332626130分分析和因子分析等方法,并能在屏幕(或打印机)上显示(打印)如正态分布图、直方图、散点图等各种统计图表。从某种意义上讲,SPSS软件还可以帮助数学功底不够的使用者学习运用现代统计技术。使用者仅需要关心某个问题应该采用何种统计方法,并初步掌握对计算结果的解释,而不需要了解其具体运算过程,可能在使用手册的帮助下定量分析数据。

三、自从1995年SPSS公司与微软公司合作开发SPSS界面后,SPSS界面变得越来越友好,操作也越来越简单。熟悉微软公司产品的用户学起SPSS操作很容易上手。SPSS for Windows界面完全是菜单式,一般稍有统计基础的人经过三天培训即可用SPSS做简单的数据分析,包括绘制图表、简单回归、相关分析等等,关键在于如何进行结果分析及解释,这一方面需要学习一些数理统计的基本知识,另一方面也要多进行实践,在实践中了解各种统计结果的实际意义。

怎么用SPSS分析这些数据

1、相关分析(analyze-correlate-bivatiate)将乐群性和恶性程度两个变量选进去,并选择spearman相关系数; 2、将性别变量分组(在data-split cases)将性别变量选入,并点OK,再进行第一题的操作,看男女两组的相关系数是否一样; 3、将年龄变量分组,再做第一题的操作; 4、将罪名变量分组,再做第一题的操作; 鉴于具体数据没看到,以致变量的类型不明确,所给方法请参考.

怎么用spss分析调查问卷

直接往SPSS表里输,容易出错还累. 不如用epidata软件建立调查表数据库,然后录入. 录完后直接将数据可导出为任何分析软件可识别格式,包括SPSS.

如何用spss软件做主成分分析?

老大,首先,你上传的图我无法看清。

其次,用SPSS软件做主成分分析也没那么复杂,不过你要钻研一番。下面的说明及举例希望可以对你有帮助:

主成分分析法在SPSS中的操作

1、指标数据选取、收集与录入(表1)

2、Analyze →Data Reduction →Factor Analysis,弹出Factor Analysis 对话框:

3、把指标数据选入Variables 框,Descriptives: Correlation Matrix 框组中选中Coefficients,然后点击Continue, 返回Factor Analysis 对话框,单击OK。

注意:SPSS 在调用Factor Analyze 过程进行分析时, SPSS 会自动对原始数据进行标准化处理, 所以在得到计算结果后的变量都是指经过标准化处理后的变量, 但SPSS 并不直接给出标准化后的数据, 如需要得到标准化数据, 则需调用Descriptives 过程进行计算。

从表3 可知GDP 与工业增加值, 第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、地方财政收入这几个指标存在着极其显著的关系, 与海关出口总额存在着显著关系。可见许多变量之间直接的相关性比较强, 证明他们存在信息上的重叠。

主成分个数提取原则为主成分对应的特征值大于1的前m个主成分。特征值在某种程度上可以被看成是表示主成分影响力度大小的指标, 如果特征值小于1, 说明该主成分的解释力度还不如直接引入一个原变量的平均解释力度大, 因此一般可以用特征值大于1作为纳入标准。通过表4( 方差分解主成分提取分析) 可知, 提取2个主成分, 即m=2, 从表5( 初始因子载荷矩阵) 可知GDP、工业增加值、第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、海关出口总额、地方财政收入在第一主成分上有较高载荷, 说明第一主成分基本反映了这些指标的信息; 人均GDP 和农业增加值指标在第二主成分上有较高载荷, 说明第二主成分基本反映了人均GDP 和农业增加值两个指标的信息。所以提取两个主成分是可以基本反映全部指标的信息, 所以决定用两个新变量来代替原来的十个变量。但这两个新变量的表达还不能从输出窗口中直接得到, 因为“Component Matrix”是指初始因子载荷矩阵, 每一个载荷量表示主成分与对应变量的相关系数。

用表5( 主成分载荷矩阵) 中的数据除以主成分相对应的特征值开平方根便得到两个主成分中每个指标所对应的系数。将初始因子载荷矩阵中的两列数据输入( 可用复制粘贴的方法) 到数据编辑窗口( 为变量B1、B2) , 然后利用“Transform→Compute Variable”, 在Compute Variable对话框中输入“A1=B1/SQR(7.22)”[注: 第二主成分SQR后的括号中填1.235, 即可得到特征向量A1(见表6)。同理, 可得到特征向量A2。将得到的特征向量与标准化后的数据相乘, 然后就可以得出主成分表达式[注: 因本例只是为了说明如何在SPSS 进行主成分分析, 故在此不对提取的主成分进行命名, 有兴趣的读者可自行命名。

标准化:通过Analyze→Descriptive Statistics→Descriptives 对话框来实现: 弹出Descriptives 对话框后, 把X1~X10 选入Variables 框, 在Save standardized values as variables 前的方框打上钩, 点击“OK”, 经标准化的数据会自动填入数据窗口中, 并以Z开头命名。

以每个主成分所对应的特征值占所提取主成分总的特征值之和的比例作为权重计算主成分综合模型, 即用第一主成分F1 中每个指标所对应的系数乘上第一主成分F1 所对应的贡献率再除以所提取两个主成分的两个贡献率之和, 然后加上第二主成分F2 中每个指标所对应的系数乘上第二主成分F2 所对应的贡献率再除以所提取两个主成分的两个贡献率之和, 即可得到综合得分模型:

根据主成分综合模型即可计算综合主成分值, 并对其按综合主成分值进行排序, 即可对各地区进行综合评价比较, 结果见表8。

具体检验还需进一步探讨与学习

这个数据怎么用SPSS软件分析?想得到各评价员之间的差异,和各品种之间的差异

数据格式:分析–比较均值–单因素ANOVA,分值调入右边因变量框,核桃类型调入因子框,确定.结果:P值小于0.01,通过了0.01水平的显著性检验,说明核桃类型的分值间差异显著.希望对你有帮助,统计人刘得意