数学几何图形(数学几何图形软件)

数学几何图形(数学几何图形软件)缩略图

数学几何图形解答

数学几何图形解答

此题用对折的思想方法解: BC沿BE对折,∵∠3=∠4,∴点C落在AB上即BC在AB上 同理AD沿AE对折,∵∠1=∠2,∴点D落在AB上即AD在AB上 ∵AD‖BC ∴∠1+∠2+∠3+∠4=180度 ∴∠2+∠3=90那么∠AEB=90度.∴∠AED+∠BEC=90度 ∴对折后∠AED+∠BEC与∠AEB重合.即点C与点D重合 ∴AD+BC=AB.

初中数学中的基本图形汇总有哪些?能否共享一下?

初中数学中的基本图形汇总有哪些?能否共享一下?

初中数学中几何基本图形有:三角形、四边形、圆. 特殊三角形有:等腰三角形、等边三角形、直角三角形. 特殊四边形有:平行四边形、矩形、菱形、正方形、梯形. 还有:线段 直线 射线 点

数学的几何图形

数学的几何图形

还有立体图形

几何图形分为哪几类

根据粗略的统计和分类,几何商标图形大致有以下几类:

(1)单形.如图9,10,以一个单独几何图形为整个商标.这种例子较少见.且多为基本图形的变形.

(2)分形.将一个基本几何图形分成几部分如图3(等边三角形分为三部分)图5(五边形分出一个三角形)、图12(圆分成上下两部分).

(3)相似(同)组形.用几个相似或相同的基本几何图形组合而成,如图1(由三个等腰梯形组成)图2(由三个等边菱形组成)、图11(由五个穿孔的小圆组成).

(4)变形.由一个基本几何图变化而来.如图8(由菱形变化所得)、图9(平行四边形变化所得)、图10(矩形变化所得).

(5)组形.由两个或多个不同的基本几何图形组合而成.这种情况较为普遍.如图4(由一个圆与一正方形叠加而成)、图7(由一个等腰直角三角形与一矩形拼接而成).

(6)拟形.用几何图形或其组形来模拟物体、文字,达到传神、表意的效果.这种例子也不少.如图5(两个V的叠加)图13(拟一个“人”字,红色小圆拟一药丸)、图14(拟太阳出山)、图17(拟字母“M”).

(7)混合形.将多种手法混合使用.如图6,可视为由一立方体及其阴影组成,而且从四个方向来看,效果一样.笔者作过这样的试验:在不同年龄段的学生(从初中生和大学生)中,要求他们将自己从街上或电视上看到的商标,说出几个,并画出一、二个来.结果,说出来的,几乎都是规则几何图形组成的商标(以下简称几何图形商标)——如“北大方正”、“三菱”“徐工”等.

这给我们一个启示:几何图形商标,在多种类型的商标中,具有显著的广告宣传优势,值得数学工作者,特别是中学数学教师的关注.中学数学里的基本几何图形——三角形、矩形、正方形、梯形、菱形、圆、椭圆等进入商标设计,并扮演越来越重要的角色,为中学几何知识联系实际、为市场经济服务,开辟了一条有效途径,我们不妨结合数学教学做一点尝试.

1 几何图形商标的特点和优点

1 从中可以看出几何图形商标有以下明显特点:

(1)构图简捷明快,立体感强.这是由于基本几何图形形体规则所决定的.因此它给人们的整体印象鲜明而突出.

(2)彼此差异显著,易于人们识别和辨认.因为不同种类的几何图形的本质属性不同,决定了人们的视觉效果有很大不同.即使同为直线图形,由基本几何图形的组合不同、色彩不同,也会显示出较大差别.因而不易被混淆.

(3)规范性强,易于制作,几何图形、特别是基本几何图形的作图,都有既定标准和作法,而且只用圆规和直尺这两种工具就可以完成.这给几何图形商标的制作,带来了极大方便.一旦制图规范确定下来,便可整齐划一地制作出各种大小尺寸的几何图形商标出来.

1.2 由此给几何商标带来了良好的广告效应(这正是商标的主要价值所在):

(1)力度和美感.直线形,粗实而富有力度;曲线形,优美而富有美感.对称形,表现为匀称美;不对称形,表现出和谐美.黑白图形,庄严而有力;着色图形,明丽而悦目.

(2)易于引发联想和想象.几何商标中粗拙的(如图1,2,3),使人联想到产品的质量坚实可靠;优雅的使人联想到产品美妙、灵巧.有的与商品或厂家名称结合得如此紧密,一看便知其名称(如图4——“红方”.有的富有变化发人思索,有的构思巧妙,耐人寻味.

1.3 正因为如此,所以国内外不少著名商标,都采用几何图形.中美“史克”,美菱电器,北大方正电脑,联想集团等等

2 几何图形商标的种类

3 几何图形商标的设计

3.1 几何商标的创意,常可采用以下途径:

(1)以形象物.选择或构建适当的几何图形,来象征产品的名称、形体、属性,或生产厂名称、厂所在地风光等,以达到形——物合一的效果.如图2、图4、图6象征厂(集团)名称.

(2)以形喻意.构建几何图形,以表达产品的性能、质量,或厂家的雄心、愿望等,从而取得广告宣传的效果.如图1,以粗实的直线图形隐喻工程机械的质量可靠;图4,喻意大脑思维与外部世界的联系,从而达到“联想”的意味;图10,喻意四方都吃该厂药品,厂家有向八方发展的雄心.图13,喻“人吃药”.

(3)以形寓美,以巧妙的构思、优美的着色,使美寓于几何商标之中,使人们产生美的感受,从而达到吸引顾客的目的.巧妙的组合、艳丽的色彩,使消费者产生赏心悦目的美好感受,从而对其产品产生认同感.

3.2 设计时应注意的问题

(1)处理好圆与方、曲与直、巧与拙、对称与不对称、动与静等辩证关系.

由于几何图形总与现实生活中的具体事物相联系,使它们也带上了情感色彩.例如,圆、曲线图形,优美而灵活;方、直线图形,则坚实而稳重.对称图形有匀称美,不对称图形则有奇异美.我们应在商标设计,充分利用这点,处理好这些辩证关系.

(2)要给出明确的制图规范,对于非基本几何图形或组合几何图形,尤须如此

这种制图规范,最好用数学语言给出作法,或给出解析表达式(如图中线段比例、关节点坐标、曲线函数关系等).

(3)几何商标图形,尽可能不用或少用文字(中文、英文或拼音缩写字母);即使要用,也须形象化、图案化.

总之,把几何图形用于商标设计,可以给中学数学教学增添生动的内容,提高学生学习几何(初中数学难点之一)的兴趣,培养他们的创造才能.

参考文献

1 叶锦文.几何图形构成的商标的收集与创作.数学教学,1994,(4).

2 严士健.面向21世纪的中国数学教育改革.数学教育学报,1996(1).

六年级上册数学几何图形有哪些

本册的几何图形较少;只有圆和圆环 小学总的几何平面图形:长方形、正方形、三角形、平行四边形、梯形、圆、圆环 立体图形:长方体、正方体、圆柱体和圆锥体

数学几何图形

(1)可先证明三角形ABE相似于三角形FCE,又BE=2CE,所以AB=2CF,又知AB=3,所以CF=1.5 (2) (3)

七年级上数学几何图形初步所有知识

相等

几何有哪几种图形?每种图形的特性是什么

从大类上分为平面几何、立体几何、以及解析几何。

平面几何:主要研究平面即二维的图形,常见的代表图形为三角形、矩形(正方形长方形)、平行四边形(例如菱形、矩形)、梯形、五边形、其他多边形、圆、椭圆、半圆、不规则形状等等;

他们主要研究平行、垂直、面积、边长、是否正则(即正三角形、正方形等)、相等、相似等性质;

立体几何:主要研究长方体、空间四边形、平行六面体、椭球体、球体、不规则体等等,只要我们所处的空间里,所有顶点不在同一平面上的东西都可以成为体,都可以是立体几何研究的对象。

和平面几何相似,主要研究平行、垂直、面积、边长、是否正则(即正三角形、正方形等)、相等、相似等性质;

解析几何:这个分支和数学计算联系比较大,通过对图形特征特别是角度、斜率等的计算和求解以及向三维以上的空间推广的学科,往往大学才会涉及到。

如果问某种图形特征,你要说出具体哪种图形,一般的就不外乎:垂直、等腰、平行、等边这些性质。

几何图形是什么意思?

生活中到处都有几何图形,我们能看见的一切都是由点,线,面等基本几何图形组成的.几何源于西文西方的测地术,解决点线面体之间的关系.几何图形包括平面图形与立体图形.点、直线、线段、射线、三角形、四边形等为平面图形;长方体、圆球、圆锥等为立体图形.几何图形平面图形与立体图形,其实几何图形是所有图形的总称. 希望我的回答对你有用

数学几何图形题

正方形EFGH的面积最小 设正方形ABCD的边长为a,AE=x,则BE=a-x 则可证明AE=BF=CG=DH=x,AH=BE=CF=DG=a-x 所以:EF^2=BE^2+BF^2=(a-x)^2+x^2=2x^2-2ax+a^2 即:正方形EFGH的面积 S=EF^2=2x^2-2ax+a^2=2(x-a/2)^2+a^2-a^2*/2=2(x-a/2)^2+a^2/2 即:当x=a/2(即E在AB边上的中点)时,正方形EFGH的面积最小,最小的面积为a^2/